The Constitutive Equations of Anisotropic Elasticity

Basic mechanical equations

Stress tensor

σ=[σxτxyτxzτyxσyτyzτzxτzyσz]

Herein, τxy=τyx,τxz=τzx,τyz=τzy, so there are 6 stress componets in total, σx,σy,σz,τxy,τyz,τzx.

Strain tensor

ε=[εxεxyεzxεxyεyεyzεzxεyzεz]

Herein, εxy=12γxy,εyz=12γyz,εzx=12γzx are shear strains。 γxy,γyz,γzx are engineering shear strains. εx,εy,εz are linear strains. So there are 6 strain componets in total.

The relationship between stress and strain

σx=C11εx+C12εy+C13εz+C14γyz+C15γzx+C16γxyσy=C21εx+C22εy+C23εz+C24γyz+C25γzx+C26γxyσz=C31εx+C32εy+C33εz+C34γyz+C35γzx+C36γxyτyz=C41εx+C42εy+C43εz+C44γyz+C45γzx+C46γxyτzx=C51εx+C52εy+C53εz+C54γyz+C55γzx+C56γxyτxy=C61εx+C62εy+C63εz+C64γyz+C65γzx+C66γxy

Herein,

The relationship between stress and strain

Here we use 1, 2, 3 axis instead of x, y, z axis to simplify the symbols of stress and strain component. The corresponding substitution relationship is as follows:

StressStrainσxσ1εxε1σyσ2εyε2σzσ3εzε3τyzσ4γyz=2εyzε4τzxσ5γzx=2εzxε5τxyσ6γxy=2εxyε6

The relationship between stress and strain can be written as follows:

σ1=C11ε1+C12ε2+C13ε3+C14ε4+C15ε5+C16ε6σ2=C21ε1+C22ε2+C23ε3+C24ε4+C25ε5+C26ε6σ3=C31ε1+C32ε2+C33ε3+C34ε4+C35ε5+C36ε6σ4=C41ε1+C42ε2+C43ε3+C44ε4+C45ε5+C46ε6σ5=C51ε1+C52ε2+C53ε3+C54ε4+C55ε5+C56ε6σ6=C61ε1+C62ε2+C63ε3+C64ε4+C65ε5+C66ε6

Completely anisotropic: 21 elastic constants

In a homogeneous elastomer, if each point has different elastic properties in different directions, this kind of elastomer is called general anisotropic body.

{σ1σ2σ3σ4σ5σ6}=[C11C12C13C14C15C16C21C22C23C24C25C26 C31C32C33C34C35C36C41C42C43C44C45C46C51C52C53C54C55C56C61C62C63C64C65C66]{ε1ε2ε3ε4ε5ε6}

With one elastic symmetry plane: 13 elastic constants

{σ1σ2σ3σ4σ5σ6}=[C11C12C1300C16C21C22C2300C26C31C32C3300C36000C44C450000C54C550C61C62C6300C66]{ε1ε2ε3ε4ε5ε6}

With two elastic symmetry plane: Orthotropic, 9

{σ1σ2σ3σ4σ5σ6}=[C11C12C13000C21C22C23000C31C32C33000000C44000000C55000000C66]{ε1ε2ε3ε4ε5ε6}

With one elastic symmetry axis: Transversely isotropic, 5 elastic constants

{σ1σ2σ3σ4σ5σ6}=[C11C12C13000C21C11C13000C31C31C33000000C44000000C44000000(C11C12)/2]{ε1ε2ε3ε4ε5ε6}

Isotropic: 2 elastic constants

{σ1σ2σ3σ4σ5σ6}=[C11C12C12000C21C11C12000C21C21C11000000(C11C12)/2000000(C11C12)/2000000(C11C12)/2]{ε1ε2ε3ε4ε5ε6}